Disruption of the Saccharomyces cerevisiae FAT1 Gene Decreases Very Long-chain Fatty Acyl-CoA Synthetase Activity and Elevates Intracellular Very Long-chain Fatty Acid Concentrations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FATP2 is a hepatic fatty acid transporter and peroxisomal very long-chain acyl-CoA synthetase.

Fatty acid transport protein (FATP)2, a member of the FATP family of fatty acid uptake mediators, has independently been identified as a hepatic peroxisomal very long-chain acyl-CoA synthetase (VLACS). Here we address whether FATP2 is 1) a peroxisomal enzyme, 2) a plasma membrane-associated long-chain fatty acid (LCFA) transporter, or 3) a multifunctional protein. We found that, in mouse livers...

متن کامل

Mitochondrial very long chain acyl-CoA dehydrogenase deficiency--a new disorder of fatty acid oxidation.

Very long chain acyl-CoA dehydrogenase is a newly characterised enzyme in mitochondrial fatty acid oxidation. A girl who presented on the second day of life with a sudden and severe illness due to deficiency of this enzyme is reported. There is evidence that some children (and perhaps all) originally diagnosed with a deficiency of long-chain acyl-CoA dehydrogenase, in fact, have a defect involv...

متن کامل

Human very long-chain acyl-CoA synthetase and two human homologs: initial characterization and relationship to fatty acid transport protein.

Several human genes with a high degree of homology to rat very long-chain acyl-CoA synthetase (rVLCS) and mouse fatty acid transport protein (mFATP) were identified. Full-length cDNA clones were obtained for three genes, and predicted amino acid sequences were generated. Initial characterization indicated that one gene was most likely hVLCS, the human ortholog of rVLCS. The other two (hVLCS-H1 ...

متن کامل

Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals

Production of chemicals and biofuels through microbial fermentation is an economical and sustainable alternative for traditional chemical synthesis. Here we present the construction of a Saccharomyces cerevisiae platform strain for high-level production of very-long-chain fatty acid (VLCFA)-derived chemicals. Through rewiring the native fatty acid elongation system and implementing a heterologo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Biological Chemistry

سال: 1998

ISSN: 0021-9258

DOI: 10.1074/jbc.273.29.18210